This function generates the lavaan syntax for a mediation model. The model can take an arbitrary number of predictor (x), mediator (m), and outcome (y) variables.
Arguments
- x
Vector of predictor (x) variable names
- m
Vector of mediator (m) variable names
- y
Vector of outcome (y) variable names
- covariates
Vector of covariate (control) variable names (default
NULL)
Details
This function implements the method used by JASP v0.16.4 to generate a mediation model,
possibly adjusting for covariates. Adjustment for covariates is done by partialling
out the effect of the control variables given in covariates from all predictor x,
mediator m, and outcome y variables.
References
JASP Team (2022). JASP (Version 0.16.4). Computer software: https://jasp-stats.org/
Examples
library(lavaan)
#> This is lavaan 0.6-12
#> lavaan is FREE software! Please report any bugs.
get_mediation_model("x1", "x2", "x3") |>
sem(df) |>
summary()
#> lavaan 0.6-12 ended normally after 1 iterations
#>
#> Estimator ML
#> Optimization method NLMINB
#> Number of model parameters 5
#>
#> Number of observations 500
#>
#> Model Test User Model:
#>
#> Test statistic 0.000
#> Degrees of freedom 0
#>
#> Parameter Estimates:
#>
#> Standard errors Standard
#> Information Expected
#> Information saturated (h1) model Structured
#>
#> Regressions:
#> Estimate Std.Err z-value P(>|z|)
#> x3 ~
#> x2 (b11) 0.990 0.049 20.397 0.000
#> x1 (c11) 0.060 0.068 0.875 0.382
#> x2 ~
#> x1 (a11) 0.984 0.045 22.000 0.000
#>
#> Variances:
#> Estimate Std.Err z-value P(>|z|)
#> .x3 0.375 0.024 15.811 0.000
#> .x2 0.318 0.020 15.811 0.000
#>
#> Defined Parameters:
#> Estimate Std.Err z-value P(>|z|)
#> ind_x1_m1_y1 0.974 0.065 14.957 0.000
#> ind_x1_y1 0.974 0.065 14.957 0.000
#> tot_x1_y1 1.034 0.066 15.733 0.000
#>