Function reference
-
gentleman-packagegentleman - gentleman: Helpers for Data Preparation, Descriptives, Models, & Publication
-
df - Simulated cross-lagged dataset
-
add_composites() - Add composites (item means)
-
add_vars_from_one_df_to_another() - Add variables from one data.frame to another
-
cast() - Cast variables of one type to another
-
contr.dummy_or_effect() - Contrasts for factors using effect coding (when k > 2) or dummy coding (when k = 2)
-
dichotomize() - Dichotomize by picking value returned by a function
-
get_fuzzy_match() - Fuzzy-match strings
-
group_some_factor_levels() - Combine some factor levels using a map
-
make_factors_into_effect_codes() - Generates effect codes for factors
-
make_numeric_if_possible() - Make numeric if possible
-
recode_using_excel_map() - Recode values using Excel map (lookup table)
-
recode_values_to_NA() - Recode values to NA
-
remove_blank_factor_levels() - Remove blank factor levels
-
remove_empty_rows()remove_empty_cols() - Remove empty rows or columns
-
remove_factors_with_too_many_levels() - Remove factors with too many levels
-
remove_non_ascii_from_df() - Remove non-ASCII characters from data.frame
-
remove_outliers() - Flag and remove outliers
-
remove_vars_with_too_many_missing() - Remove variables with too many missing
-
rescale_min_max() - Rescale using min-max normalization
-
reverse_code() - Reverse-code numeric variables
-
scale_and_combine() - Combine numeric variables into one
-
standardize() - Standardize all numeric variables in a data.frame
-
to_long() - Pivot data.frame from wide to long
-
transpose_df() - Transpose data.frame
-
winsorize() - Winsorize variables
-
ana_fn_aov() - Returns p-values from ANOVA for specified vars and grouping variable
-
ana_fn_chisq() - Returns p-values from Chi-square tests for specified vars and grouping variable
-
ana_fn_rm_aov() - Returns p-values from repeated-measures (RM) ANOVA for specified vars and grouping (time) variable
-
compare_pairs_of_vars() - Compares pairs of variables using matched-pairs t-tests
-
format_p() - Format p-values with 3 decimals, no leading 0s, and < .001
-
get_desc_table() - Get a table of descriptive statistics for numeric or factor variables
-
get_desc_time() - Get a table of descriptive statistics using RM-ANOVA for numeric variables
-
get_sig_differences_between_groups() - Get variables for which a group difference exists
-
plot_density_by_groups() - Plot density by groups
-
tbl_fn_fac() - Internal, generic function to get summary table for factor variables
-
tbl_fn_num() - Internal, generic function to get summary table for numeric variables
-
compare_sig_effects_in_two_pub_tables() - Compare significant effects from two publication tables
-
decompose_interaction() - Decompose 2-way (x1*x2) interaction
-
get_crosslagged_model() - Generate lavaan syntax for cross-lagged model
-
get_fmodel() - Get model object(s) using formula interface
-
get_lavaan_interaction_plot() - Get interaction plot for lavaan model
-
get_measurement_model() - Generate lavaan syntax for measurement model
-
get_mediation_model() - Generate lavaan syntax for mediation model
-
get_mediation_model_2level() - Generate lavaan syntax for 2-level mediation model
-
get_mediation_model_3wave() - Generate lavaan syntax for 3-wave longitudinal mediation model
-
get_moderated_mediation_model() - Generate lavaan syntax for moderated mediation
-
get_qca() - Run qualitative comparative analysis (QCA)
-
get_sig_effects_from_pub_table() - Extract significant effects from a publication table
-
make_pub_table_from_broom_tidy() - Generate publication table from broom::tidy summaries
-
make_pub_table_from_lavaan_models() - Generate publication table from lavaan models
-
add_cluster_assignment() - Add cluster with iterative variable selection
-
calc_cluster_importances() - Calculate variable importances in clustering
-
get_cluster() - Get cluster assignment using Gower distance matrix
-
add_predictions_from_automl() - Add predictions from an AutoML object to a test set
-
add_target_back_to_test_set_from_ref_table() - Add target values back in the test set
-
get_automl_config() - Create configuration object for running AutoML
-
get_automl_model() - Run an H2O AutoML model
-
init_h2o() - Initialize a local H2O cluster
-
keep_only_vars_in_both_train_and_test() - Remove variables from train and test sets when they are unique
-
plot_and_print_variable_importances() - Plot and print variable importances from an AutoML model
-
remove_target_from_test_and_add_ref_to_env() - Remove target from test set and back up values in reference table
-
run_automl_pipeline() - Run a full AutoML pipeline
-
scale_numeric_features_in_train_and_test() - Scale numeric features in train and test sets
-
ship_train_and_test_to_h2o() - Send train-test data.frames to H2O cluster
-
ttsplit() - Split data.frame into training and test sets
-
get_git_commit() - Retrieve current git commit information
-
get_logger() - Create a logger
-
logtext() - Log output to text file
-
empty_df() - Create empty data.frame with column names
-
get_all_pairs() - Get all possible pairs from vector
-
get_all_pairs_with_op() - Helper function to generate pairs with an operator separator
-
make_df_from_named_list() - Combine rows of named list of data.frames
-
replace_in_nested_list() - Replace values in (possibly nested) list of vectors
-
replace_in_vector() - Replace all occurrences of a value in a vector and replace
-
replace_in_vector_at_position() - Replace vector element at given position with value
-
substr_right() - Substring character from the right side
-
view() - Alias for utils::View()